Optimization of a CHP system using a forecasting dispatch and teaching-learning-based optimization algorithm
Ashkan Toopshekan,
Ali Abedian,
Arian Azizi,
Esmaeil Ahmadi and
Mohammad Amin Vaziri Rad
Energy, 2023, vol. 285, issue C
Abstract:
Using optimization algorithms and developing dispatch strategies are essential in sizing renewable energy systems to ensure optimal performance, cost-effectiveness, and sustainability. This study employs the Teaching-Learning-based Optimization (TLBO) algorithm to determine the optimal size of a Combined Heat and Power (CHP) system. The optimization results are validated using the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Furthermore, a novel dispatch strategy is developed to make an informed decision when using different energy sources. The strategy considers a 24-h foresight of upcoming electrical demand, solar irradiation, temperature, and wind speed. The developed dispatch strategy has led to a reduction in cost and excess electricity compared to the pre-prepared strategies. The energy sources employed include Photovoltaic panels (PV), Wind Turbines (WT), Diesel Generators (DG) with heat recovery capability, battery banks, and boilers to supply electrical and thermal demand. A Levelized cost of energy (LCOE) of 0.142 $/kWh is obtained for the PV/WT/DG/Battery/Boiler system. Although the three algorithms find almost similar optimal solutions, TLBO exhibits better convergence speed than PSO and GA. A comparison with HOMER software control strategies shows the developed dispatch strategy is 3.4% and 15.5% more efficient than Cycle Charging and Load Following strategies, respectively. Lastly, a comprehensive economic sensitivity analysis is performed to investigate the effect of inflation and discount rates on the size of components and final objective functions.
Keywords: Renewable energy; Forecasting dispatch; Teaching learning based optimization; Combined heat and power (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223020650
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223020650
DOI: 10.1016/j.energy.2023.128671
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().