Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate
Daolun Li,
Xia Zhou,
Yanmei Xu,
Yujin Wan and
Wenshu Zha
Energy, 2023, vol. 285, issue C
Abstract:
Due to the importance of the main controlling factors for oil and gas field development, numerical simulation methods, physical experimental methods and other methods have been used to study the problem. However, it is difficult to find the main controlling factors of a certain type of gas field using these methods. Therefore, a two-fold three-network model is proposed to solve the difficulties by coupling dynamic production data and static geological engineering data in this paper. First fold is consisted of 1D convolution network and Long Short-Term Memory neural network (LSTM), can perform good feature extraction and learn long time sequence dependence for dynamic production sequence data. Second fold made of BP neural network, is mainly dealing with static geological engineering data. By combining the two folds, the model can couple dynamic production data and static geological engineering data at the same time. Finally, the Garson feature selection are used to obtain the main controlling factors of gas field recovery rate based on trained network model. The experimentally obtained trained model can fit the recovery rate of gas field well. This shows that the proposed method can effectively discover the main controlling factors for gas field for different types, which has wide application for gas development.
Keywords: Natural gas; Recovery rate; Main controlling factors; Couple model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223021618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223021618
DOI: 10.1016/j.energy.2023.128767
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().