Spatial migration of lattice oxygen for copper-iron based oxygen carriers in chemical looping combustion
Li Yang,
Caifu Li,
Chen Song,
Dan Zhu,
Jiangyuan Zhao,
Fang Liu and
Xiaorui Liu
Energy, 2023, vol. 285, issue C
Abstract:
Oxygen carrier (OC) is of great importance in chemical looping combustion (CLC) technology. The migration rate of bulk lattice oxygen during reduction process is detrimental in reaction rate. However, the migration path of lattice oxygen is still not clear. In this study, a thermogravimetric analyzer (TGA) was used to investigate the reaction characteristics and kinetic parameters of the OC. The oxygen migration paths of CuO and CuFe2O4 bulk lattices were studied by density functional theory (DFT) in a five-layer (2 × 1) CuO (1 1 1) and nine-layer (1 × 1) CuFe2O4 (1 0 0) plane model. The kinetic parameters, activation energy changes and relative kinetic model of the OC reduction were explored. According to the DFT results, the deeper bulk phase oxygen requires greater more energy toovercome energy barrier for migration. CuO has a lower oxygen release capacity than CuFe2O4 in the early stages, but higher in the later stage. The reaction kinetics study revealed that the reaction mechanism of the reduction of the copper-iron composite OC is a tertiary chemical reaction control mechanism. During the reaction, the activation energy of the OC changes continuously. The macroscopic reaction kinetics agree with the microscopic simulation, proving the simulation model's validity.
Keywords: Chemical looping combustion; Density functional theory; Oxygen carrier; Lattice oxygen migration; Reaction kinetics analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027421
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027421
DOI: 10.1016/j.energy.2023.129348
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().