EconPapers    
Economics at your fingertips  
 

Predicting the discharge capacity of a lithium-ion battery after nail puncture using a Gaussian process regression with incremental capacity analysis

Casey Jones, Meghana Sudarshan and Vikas Tomar

Energy, 2023, vol. 285, issue C

Abstract: This work uses a Gaussian process regression to predict the discharge capacity of small Lithium-ion pouch cells after a nail puncture. Previous studies have shown that cells can operate at a reduced capacity after experiencing abuse similar to what can be seen during extreme field operation, where the ability to predict cell functionality can be critical to safety. Other studies have shown that different features of cell incremental capacity curves can be used to determine the extent of cell degradation during normal operation, which can be used to predict future operation. For this work, 15 cells are punctured with a nail and allowed to continue operating for 100 total cycles to collect data. The incremental capacity curves are calculated, then the magnitude and corresponding voltage of the highest peak are determined. A Gaussian process regression is used to predict the discharge capacity during operation after the nail punctures. The results show a mean coefficient of determination of 0.923 with a median value of 0.95, a mean root mean square error of 0.013 and median value of 0.09, and a mean absolute error of 0.011 with a median value of 0.08, indicating the regression can be useful in predicting discharge capacity.

Keywords: Lithium-ion batteries; Incremental capacity analysis; Gaussian process regression; Nail penetration; State of health estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223027585
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027585

DOI: 10.1016/j.energy.2023.129364

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223027585