Robust state-of-charge estimation method for lithium-ion batteries based on the fusion of time series relevance vector machine and filter algorithm
Chao Wang,
Xin Zhang,
Xiang Yun,
Xiangfei Meng and
Xingming Fan
Energy, 2023, vol. 285, issue C
Abstract:
Data-driven methods have been widely employed in the field of Lithium-ion battery state-of-charge (SOC) estimation. However, most of these methods do not impose constraints on the rate of change between adjacent output SOC values, which leads to the issue of output SOC fluctuations when the battery current undergoes significant variations. To address this issue, a fusion algorithm is proposed in this study, which combines the multi-kernel Incremental relevance vector machine (MIRVM) and seasonal autoregressive integrated moving average (SARIMA) within an adaptive Kalman filter (AKF) framework, called SARIMA_AKF_MIRVM(SFR) algorithm. Employing the MIRVM algorithm, we aim to construct a data-driven model capturing the intricate relationship between voltage, current, and SOC of batteries under varying operating conditions. Furthermore, we shall leverage the SARIMA algorithm to establish a time series forecasting model for the adjacent SOC values. Subsequently, we shall introduce the AKF algorithm to filter prediction results associated with the MIRVM algorithm. Additionally, we shall integrate the whale optimization algorithm to obtain the optimal parameter combination for SFR algorithm. The experimental results demonstrate that the SFR algorithm exhibits exceptional generalization capabilities and robustness. The RMSE and MAE for four experimental test conditions remain below 0.3 %, with the maximum MAE reaching a mere 0.14 %.
Keywords: Relevance vector machine; Seasonal autoregressive integrated moving average; Whale optimization algorithm; Adaptive Kalman filter; SOC estimation (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028608
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028608
DOI: 10.1016/j.energy.2023.129466
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().