EconPapers    
Economics at your fingertips  
 

Performance degradation prediction method of PEM fuel cells using bidirectional long short-term memory neural network based on Bayesian optimization

Dongfang Chen, Wenlong Wu, Kuanyu Chang, Yuehua Li, Pucheng Pei and Xiaoming Xu

Energy, 2023, vol. 285, issue C

Abstract: Proton exchange membrane (PEM) fuel cell is the core equipment that can directly convert hydrogen energy into electricity. In the process of long-term operation, due to the aging of membrane electrode assembly and other components, the fuel cell performance gradually deteriorates. The voltage prediction of fuel cells is very important for performance and lifetime optimization. Long short-term memory neural network is one of the widely used prediction methods. Based on the prediction method of bidirectional long short-term memory neural network, the hyperparameters of the neural network model by Bayesian optimization algorithm is optimized to improve the accuracy of fuel cell performance degradation prediction. When the sampling time interval is 25 min and the training set is 45 %, the root mean square error and the average absolute percentage error of the prediction results is reduced to 6.3 mV and 0.1245 %, respectively. Moreover, by analyzing the influence of different sampling time intervals and training set proportion on the prediction results, a data set that takes into accounts both efficiency and accuracy is obtained. The proposed method based on Bayesian optimization can achieve more accurate performance degradation prediction.

Keywords: PEM fuel cell; Performance degradation prediction; Long short-term memory neural network; Bayesian optimization algorithm; Sampling time interval (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028633
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028633

DOI: 10.1016/j.energy.2023.129469

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028633