EconPapers    
Economics at your fingertips  
 

Experimental study on the combustion behaviors of continuous methanol spill fires on the vertical plane

Weixin Tong, Jie Ji, Chen Wang, Chunxiao Li and Jiping Zhu

Energy, 2023, vol. 285, issue C

Abstract: The development of coal-based fuels is the best way to supplement the petroleum shortage. During the storage and transportation of coal-based fuels, fuel leakage often forms spill fires, posing a serious threat to energy utilization. A series of spill fire experiments were conducted on a vertical plate to improve the understanding of the combustion behavior of spill fires. Methanol was used as the fuel and the leakage rate was 0.32 mL/s∼3.07 mL/s. When the fuel leakage rate is small (≤2.17 mL/s), the fuel burning area gradually shrinks until it reaches a stable value. While the fuel leakage rate is large (≥2.46 mL/s), the flame keeps covering the whole plane below the leakage outlet and the burning area does not shrink. Gravity-dominated diffusion combustion on the vertical plane will result in a thinner fuel thickness, with a calculated average methanol thickness of 0.11 times that of the fuel burning on the horizontal plane. A heat transfer equilibrium model of the steady-state combustion process is further performed, which show that the combustion process of methanol in these cases is dominated by convective heat transfer, accounting for about 90 % of the total heat feedback.

Keywords: Vertical plane; Continuous spill fire; Methanol; Fuel combustion; Heat transfer (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028694
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028694

DOI: 10.1016/j.energy.2023.129475

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223028694