EconPapers    
Economics at your fingertips  
 

Battery longevity-conscious energy management predictive control strategy optimized by using deep reinforcement learning algorithm for a fuel cell hybrid electric vehicle

Xiaoxia Ren, Jinze Ye, Liping Xie and Xinyou Lin

Energy, 2024, vol. 286, issue C

Abstract: Energy management strategies play an essential role in improving fuel economy and extending battery lifetime for fuel cell hybrid electric vehicles. However, the traditional energy management strategy ignores the lifetime of the battery for good fuel economy. To overcome this drawback, a battery longevity-conscious energy management predictive control strategy is proposed based on the deep reinforcement learning algorithm predictive equivalent consumption minimization strategy (DRL-PECMS) in this study. To begin with, the back-propagation neural network is devised for predicting demand power, and the predictive equivalent consumption minimum strategy (PECMS) is proposed to improve the hydrogen consumption. Then, in order to improve the battery durability performance, the deep reinforcement learning algorithm is utilized to optimize the battery power and improve battery lifetime. Finally, numerical verification and hard-ware in the loop experiments are conducted to validate hydrogen consumption and battery durability performance of the proposed strategy. The validation results show that, compared with CD/CS and SQP(Sequential Quadratic Programming), the PECMS combined can achieve better fuel economy with the fuel consumption reduction by 55.6 % and 5.27 %, which effectively improves the fuel economy. The DRL-PECMS can reduce the effective Ah-throughput by 3.1 % compared with the PECMS. The numerous validations and comparisons demonstrate that the proposed strategy effectively accomplishes the trade-off optimization between energy consumption and battery durability performance.

Keywords: Fuel cell electric vehicle; Energy management strategy; Velocity prediction; Battery longevity-conscious strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422302738X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x

DOI: 10.1016/j.energy.2023.129344

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302738x