EconPapers    
Economics at your fingertips  
 

Large-scale integration of renewable energies by 2050 through demand prediction with ANFIS, Ecuador case study

Paul Arévalo, Antonio Cano and Francisco Jurado

Energy, 2024, vol. 286, issue C

Abstract: The growing reliance on hydroelectric power and the risk of future droughts pose significant challenges for power systems, especially in developing countries. To address these challenges, comprehensive long-term energy planning is essential. This paper proposes an optimized electrical system for 2050, using Ecuador as a case study. For forecasting electricity demand, a Neuro-Fuzzy Adaptive Inference System is employed, utilizing real historical data. Subsequently, the EnergyPlan software constructs a long-term energy consumption model, exploring three scenarios based on Ecuador's energy potential. The first scenario represents a 'business as usual’ approach, mirroring the current trend in the Ecuadorian electricity system. In contrast to the second scenario, it encompasses a broader range of renewable sources, including offshore wind, pumped storage, biomass, and geothermal energy. The third scenario extends the second one by incorporating demand response systems, such as vehicle-to-grid and hydrogen-to-grid technologies. In terms of novelty, this study highlights the innovative use of the Neuro-Fuzzy Adaptive Inference System for demand forecasting, along with a comprehensive exploration of multiple scenarios to optimize the electrical system. Research findings indicate that the integration of these new renewable energy sources not only reduces electricity import costs but also ensures surplus electricity production. Consequently, it is anticipated that the 2050 electricity system will reduce its dependence on hydroelectric energy while adopting photovoltaic and wind energy with penetration rates of 65 %, 11.2 %, and 9 %, respectively. This transition will be facilitated by a pumped storage system with a 28 % penetration rate and enhanced connectivity with neighboring countries, enabling the seamless integration of electric and hydrogen vehicles.

Keywords: Neural network; Renewable sources; EnergyPlan; Demand response; Ecuador (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028402
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028402

DOI: 10.1016/j.energy.2023.129446

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028402