EconPapers    
Economics at your fingertips  
 

Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield

Ke Li, Jian Wen, Biping Xin, Aimin Zhou and Simin Wang

Energy, 2024, vol. 286, issue C

Abstract: The transient-state model of self-pressurization of liquid hydrogen tank is constructed. It consists a heat and mass transfer model of fluid domain and a heat conduction model of VMLI (vacuum multi-layer insulation) coupled with VCS (vapor-cooled shield). The vapor consumption factor λv, the dormancy extension factor λd and the unit factor λ are defined. λv is the ratio of vapor consumption with the initial hydrogen mass in tank, and λd is the extension of the dormancy with VCS opened relative to that with VCS closed, and λ is the efficiency of VCS shielding heat leakage. The effects of the mass flowrate in VCS, λv, dimensionless position of VCS, opening moment of VCS on λd and λ are investigated. The results show that, when λv and the operating time of VCS are fixed, the best dimensionless position of SVCS (single vapor-cooled shield) and DVCS (double vapor-cooled shield) that maximizes λd is 0.622 and (0.333,0.644) respectively. Under condition that the duration time of VCS and λv are fixed, for SVCS and DVCS, the best opening moment that maximizes λd is observed to be day 23.26 and day 34.84 respectively, and the maximum of λd with DVCS is 29.5 % larger than that with SVCS.

Keywords: Liquid hydrogen tank; Self-pressurization; Transient-state model; Vapor-cooled shield; Vapor consumption factor; Dormancy extension factor (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422302844X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s036054422302844x

DOI: 10.1016/j.energy.2023.129450

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s036054422302844x