Performance improvement of microbial fuel cell using experimental investigation and fuzzy modelling
Mostafa Ghasemi and
Hegazy Rezk
Energy, 2024, vol. 286, issue C
Abstract:
The yield of a microbial fuel cell (MFC) is significantly influenced by the media composition, which mainly consists of carbon, nitrogen sources and aeration rate. This study uses fuzzy modelling and optimization to enhance the performance of MFC. First, a simulation of the microbial fuel cell model using three input parameters—glucose (g/L), yeast extract (g/L), and aeration (ml/min)—was performed using experimental data sets. Three output parameters—power density (W/m2), COD removal (%), and coulombic efficiency (%)—are used to assess the performance. Then, the ideal values for three input controlling parameters are found using the salp swarm optimizer (SSO) for simultaneously increasing power density, COD elimination, and coulombic efficiency. For the fuzzy model of the power density, the RMSE values for the training and testing data sets are 1.35 e−07 and 0.0424, respectively. The R-squared values for training and testing are 1.0 and 0.98, respectively. Low RMSE values and high R-squared proved the accuracy of fuzzy model. Then using, SSA, the coulombic efficiency climbed from 38 % to 40.33 %, and the COD removal went from 80 % to 81.71 %. Under this condition, the performance index increased from 118.525 to 122.532 by around 3.4 %.
Keywords: Microbial fuel cell; Modelling; Salp swarm optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028803
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028803
DOI: 10.1016/j.energy.2023.129486
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().