EconPapers    
Economics at your fingertips  
 

A multi-head attention mechanism aided hybrid network for identifying batteries’ state of charge

Zongxiang Li, Liwei Li, Jing Chen and Dongqing Wang

Energy, 2024, vol. 286, issue C

Abstract: A Convolution Neural Network and a Bidirectional Long Short-Term Memory network connected architecture with a Multi-Head Attention mechanism (CNN-BiLSTM-MHA) is studied for predicting state of charge (SOC) of lithium-ion batteries (LIBs). Firstly, an adaptive noise based complete ensemble empirical mode decomposition (AN-CEEMD) algorithm is adopted to catch the intrinsic features of measured battery signals by adding white noises. Secondly, a CNN-BiLSTM model with the MHA mechanism is developed to learn the mapping between processed input signals and battery SOC, it has three parts: 1) the CNN extracts features of the processed data, mine the relation among input signals, and promote estimation precision; 2) the BiLSTM has memory ability to catch battery dynamics, and the Swish activation function in the BiLSTM ensures unsaturated and reduces over-fitting due to its upper unbound and lower bound; 3) The multi-head attention mechanism uses several independent self-attention layers to associate input information and variables, extracts more associate information by adding weights; it reduces the overfitting risk of a single attention head, and improves the model generalization performance through joint learning of multiple heads. Finally, experiments and simulations are implemented under four operating conditions at five different temperatures, and the presented method is verified effective.

Keywords: Lithium-ion batteries; State of charge; Adaptive noise based complete ensemble empirical mode decomposition (AN-CEEMD); CNN-BiLSTM network; Multi-head attention mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223028980
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028980

DOI: 10.1016/j.energy.2023.129504

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223028980