A novel prediction method of fuel consumption for wing-diesel hybrid vessels based on feature construction
Zhang Ruan,
Lianzhong Huang,
Kai Wang,
Ranqi Ma,
Zhongyi Wang,
Rui Zhang,
Haoyang Zhao and
Cong Wang
Energy, 2024, vol. 286, issue C
Abstract:
Accurate fuel consumption prediction is essential for optimizing the operation of wing-diesel hybrid vessels and improving energy efficiency. This paper proposes a grey box model (GBM) for wing-diesel hybrid vessel fuel consumption prediction based on feature construction. Both parallel and series grey box modelling methods, as well as six machine learning (ML) algorithms are adopted to establish twelve combinations of prediction models. Then, a feature construction method based on the aerodynamic performance of the wing and the energy relationship of the hybrid system is proposed. Three types of wing features, namely wing thrust, wing thrust power, and wing fuel consumption savings are constructed and introduced into each combination respectively. Finally, based on noon report data of a wing-diesel hybrid vessel, the combinations are trained and validated. The best combination is obtained by considering the root mean square error (RMSE), which is parallel modeling method, random forest (RF) algorithm, and wing fuel consumption savings feature. Its RMSE decreased by 41.7 % compared to the white box model (WBM). Therefore, the GBM proposed in this paper can predict the daily fuel consumption of wing-diesel hybrid vessels with high accuracy, facilitating operational optimization and contributing to the greenization and decarbonization of the shipping industry.
Keywords: Wing-diesel hybrid vessel; Fuel consumption prediction; Feature construction; Data integration; Grey box model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029109
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029109
DOI: 10.1016/j.energy.2023.129516
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().