Fifth-generation district heating and cooling: Opportunities and implementation challenges in a mild climate
Kristian Gjoka,
Behzad Rismanchi and
Robert H. Crawford
Energy, 2024, vol. 286, issue C
Abstract:
Fifth-generation district heating and cooling (5GDHC) systems have the potential to provide simultaneous heating and cooling, allowing for energy exchange between users with different needs. However, their viability in mild climates with a higher share of cooling demand remains unclear. In this paper, we propose a framework for assessing the engineering, economic and environmental performance of a 5GDHC system compared to a state-of-the-art business-as-usual solution and demonstrate it through a practical case study for a university campus in Melbourne, Australia. When accessible heat sources and sinks are available, the 5GDHC system provides a cost-effective solution, with annual cost savings between 9 and 29 % and GHG emissions reduction between 25 and 58 % compared to an already advanced business-as-usual system. Additionally, by using peak off-peak tariffs and an hourly emission factor for the electricity consumed, we demonstrate the 5GDHC operational flexibility in pursuing different objectives, such as minimising cost or emissions, respectively. The results suggest that 5GDHC systems are an economically and environmentally viable solution in milder climates, and a successful implementation of 5GDHC in Australia can create new market opportunities and pave the way for its adoption in other countries with similar climatic conditions and no established history of district heating systems.
Keywords: District heating and cooling; 5GDHC; Smart energy systems; Heat pumps (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029195
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029195
DOI: 10.1016/j.energy.2023.129525
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().