A novel control method for the automotive CO2 heat pumps under inappropriate refrigerant charge conditions
Fan Jia,
Xiang Yin,
Feng Cao,
Jianmin Fang,
Anci Wang,
Xixi Wang and
Lichen Yang
Energy, 2024, vol. 286, issue C
Abstract:
CO2 heat pumps are increasingly widely used in automotive air conditioning, and the demand for refrigerant charge varies greatly under different modes and operation conditions. However, due to the limited space in vehicles, the accumulator cannot fully meet the refrigerant balance requirements for the variable operating conditions, and states of inappropriate refrigerant charge were frequently observed. To enhance system performance and safety under inappropriate charge conditions, an experimental setup and a mathematical model with a maximum error of 6 % were established to investigate the operating characteristics under inappropriate charge conditions. An investigation into the interplay among discharge pressure, the appropriate refrigerant charge range, and refrigerant distribution was conducted. It elucidated how refrigerant charging states (undercharged, adequately charged, or overcharged) manifest in terms of refrigerant distribution and optimal discharge pressure. A novel control method based on refrigerant distribution regulation has been proposed. The proposed control logic could increase the system IPLV by 36.8 % when the refrigerant charge deviates from the appropriate range by 12.12 %, and the greater the dysregulation in the refrigerant charge, the greater the improvement. This control logic would be more enhanced if dysregulation was considered.
Keywords: CO2 heat pumps; Refrigerant charge; Charge control; System simulation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029274
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029274
DOI: 10.1016/j.energy.2023.129533
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().