Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage
Shuhang Chen,
Changxu Qiu,
Yunwei Shen,
Xuan Tao and
Zhihua Gan
Energy, 2024, vol. 286, issue C
Abstract:
Liquid hydrogen serves as an environmentally friendly energy carrier, playing a crucial role in alleviating greenhouse effects. In order to tackle the challenges concerning energy consumption and economic costs, it becomes imperative to develop an efficient and cost-effective large-scale hydrogen liquefaction process (LHLS). This study integrates of LHLS with liquefied air energy storage (LAES) and introduces three liquefaction processes to reduce the economic cost associated with hydrogen liquefaction. By coupling LAES, electricity generated during off-peak hours can be stored and subsequently utilized in LHLS operations during peak hours, leading to a reduction in electricity costs. Furthermore, utilizing the surplus cooling capacity of LAES can enhance the efficiency of LHLS. A genetic algorithm is used to optimize the coupling processes. The calculated total annual cost (TAC) of the most economically viable coupling process amounts to 12271.8 k$/year, representing in a 20.91 % reduction compared to the independent LHLS. This indicate a clear economic advantage with the coupling process. The levelized cost of hydrogen (LCOH) and the payback period (PBP) for this particular coupling process are 2.523 $/kg and 4.56 years, respectively. A sensitivity analysis reveals that the economic benefits of the coupling processes escalate with higher electricity prices and greater liquefaction capacity.
Keywords: Hydrogen liquefaction; Liquid air energy storage; Economic; Peak and off-peak electricity prices (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029572
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029572
DOI: 10.1016/j.energy.2023.129563
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().