EconPapers    
Economics at your fingertips  
 

Forecasting electricity production from various energy sources in Türkiye: A predictive analysis of time series, deep learning, and hybrid models

Emrah Gulay, Mustafa Sen and Omer Burak Akgun

Energy, 2024, vol. 286, issue C

Abstract: When it comes to energy sources used in electricity production, the future forecasting of electricity production from renewable energy sources is highly important for both the success of technological advancements in the renewable energy field and energy security. To forecast electricity production from renewable energy sources reliably, it is necessary to accurately model the components of the relevant series. The central argument of this paper is that the various components derived from electricity production data, particularly the residual component, retain valuable predictive information despite their intricate and nonlinear nature. While linear modelling may be highly accurate initially, repeating residuals within linear structures is a discrepancy in terms of data type and methodology. In this paper, different types of hybrid models that combine a decomposition method and both machine learning and statistical approaches are suggested for forecasting electricity production from different energy sources.

Keywords: Forecasting; Time series analysis; Deep learning models; Hybrid models; Electricity production; Renewable energy sources (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029602
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029602

DOI: 10.1016/j.energy.2023.129566

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029602