EconPapers    
Economics at your fingertips  
 

Effect of hydrogen-enriched natural gas on flue gas waste heat recovery potential and condensing heat exchanger performance

Lianbo Mu, Suilin Wang, Junhui Lu, Congna Li, Yuncheng Lan, Guichang Liu and Tong Zhang

Energy, 2024, vol. 286, issue C

Abstract: Hydrogen-enriched natural gas (HENG) is one of the significant ways to store, transport, and utilize hydrogen energy. This paper presents the characteristics of HENG and flue gas, energy saving, carbon reduction, and condensate recovery potential of flue gas waste heat. Based on the theoretical and experimental study of the existing flue gas condensing heat exchanger (FGCHE) added at the rail of gas-fired boiler, the performance of the FGCHE under different hydrogen blending ratios is studied. The results show that augmenting the hydrogen blending ratio decreases the volume heating value of HENG, and CO2 content of flue gas. Meanwhile, the mass heating value of the HENG, the water vapor content, and dew point temperature of flue gas increase as the hydrogen blending ratio increases. The flue gas waste heat recovery utilization ratio and energy-saving efficiency of the FGCHE can be promoted. Moreover, the heat transfer capacity of the FGCHE using HENG is enhanced, while the flue gas flow pressure drop is reduced. Compared with the FGCHE used in pure natural gas systems, the all-hydrogen system increases the flue gas waste heat recovery amount by 62.4–120.4 %, reduces the flue gas flow pressure drop by 33.9 %, and reduces the carbon emission by 100 %.

Keywords: Hydrogen-enriched natural gas; Flue gas; Condensing heat exchanger; Energy saving; Carbon reduction (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029857
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029857

DOI: 10.1016/j.energy.2023.129591

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029857