A generic design optimization framework for semiconductor cleanroom air-conditioning systems integrating heat recovery and free cooling for enhanced energy performance
Wenxuan Zhao,
Hangxin Li and
Shengwei Wang
Energy, 2024, vol. 286, issue C
Abstract:
High-tech industrial buildings, such as semiconductor cleanrooms, generally require strict temperature, humidity, and cleanliness controls, resulting in very high energy consumption of their air-conditioning systems. However, there exist two important problems in these air-conditioning systems, i.e., large cold-heat offset and low cooling efficiency. These two serious issues are generally neglected during the design stage and further cause great energy waste during the operation stage. This study therefore proposes a generic air-conditioning system design optimization framework for semiconductor cleanrooms by integrating heat recovery and free cooling techniques at air-side and water-side, respectively. The proposed design framework can fully eliminate cold-heat offset, simultaneously reduce cooling/heating loads and enhance cooling efficiency under full-range semiconductor applications. By detailed modeling and simulations, the proposed design framework is validated and tested under various indoor cooling loads, ventilation rates, and surrounding weather and climate conditions. Results show that 2.3–33.1 % energy savings are achieved and up to 15.8GJ/m2 annual primary energy is saved, compared with the conventional design. It is also observed that cities in cold and mild climates have higher energy-saving potentials than those in hot climates. It is recommended to utilize the proposed design framework as a benchmarking air-conditioning system design in new semiconductor cleanrooms.
Keywords: Semiconductor manufacturing; Cleanroom air-conditioning system; Design optimization; Energy efficiency; Free cooling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223029948
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029948
DOI: 10.1016/j.energy.2023.129600
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().