Performance analysis of thermal management systems for prismatic battery module with modularized liquid-cooling plate and PCM-negative Poisson's ratio structural laminboard
Xiaobin Xu,
Yanghan Su,
Jizhou Kong,
Xing Chen,
Xiaolin Wang,
Hengyun Zhang and
Fei Zhou
Energy, 2024, vol. 286, issue C
Abstract:
A hybrid BTMS considering heat dissipation and mechanical protection for prismatic battery modules is constructed, which combines the modularized liquid-cooling plate (MLCP) and the phase change material (PCM)-negative Poisson's ratio structural laminboard. The effects of interior structure, flow direction, flow rate, and cooling strategy of the MLCP on the thermal performance of the battery module were investigated. It showed that the proposed MLCP was able to weaken the heating effect of coolant along the flow path by more than 50 % through modularized design. Furthermore, the alternating cooling strategy of sub-domains of MLCP was designed, which halved the energy consumption of liquid cooling systems. In comparison to the case without the laminboard, the maximum temperature and temperature difference of the case with it were reduced by 3.79 °C and 2.50 °C, respectively. Meanwhile, the maximum stress and total deformation of the battery cell were also decreased by 1.67 MPa and 78.1 μm with the protection of the laminboard at 1000 N. With the MLCP and the multifunctional laminboard, the maximum temperature and temperature difference of the battery module were kept below 35 °C and 4 °C, respectively, even at a high discharge current of 100 A and under dynamic conditions.
Keywords: Prismatic battery; Modularized liquid-cooling plate; Negative Poisson's ratio structural laminboard; Mechanical protection; Cooling control strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223030141
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030141
DOI: 10.1016/j.energy.2023.129620
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().