EconPapers    
Economics at your fingertips  
 

N-doped EG@MOFs derived porous carbon composite phase change materials for thermal optimization of Li-ion batteries at low temperature

Ying Ma, Rongrong Wei, Hongyan Zuo, Qingsong Zuo, Xiaoyu Luo, Ying Chen, Shuying Wu and Wei Chen

Energy, 2024, vol. 286, issue C

Abstract: Electric vehicles often encounter the challenge of battery capacity reduction in cold environments. Existing thermal conductive patches and partial short-circuiting for electrical heating can address the above issues. In this paper, a method to increase battery capacity was proposed by phase change material (PCM) assisted heating. Specifically, a nitrogen-doped hierarchical porous carbon (NPC) was synthesized through a combination of “low-temperature calcination + concentrated nitric acid treatment” to treat the chrysanthemum-shaped MOF-199@EG, and impregnated with stearic acid (SA) to form a stable composite PCM. With its well-developed pore structure and N-adsorbed active sites, the NPC prevents the leakage of molten SA, maintains stability effect and significantly improves the thermal properties of SA composites. The SA/NPC has a loading rate of 80.15 wt%, closely approaching the theoretical values of latent heat (137.89 J·g-1). It also demonstrates enhanced thermal conductivity (1.873 W·m-1·K-1) and thermal diffusivity (1.024 mm2·s-1). Thermal conductivity and thermal diffusivity of SA/NPC are 8.56 times and 14.06 times higher, respectively, than those of SA. Furthermore, when the lithium-ion battery is discharged 2C at −20 °C, the utilization of SA/NPC as an insulation material can increase the discharge energy by 7.89 %. Consequently, this novel composite PCM holds significant promise for the thermal optimization of batteries at low temperature.

Keywords: Composite phase change materials; MOFs derived porous carbon; Thermal properties; N-doped; Battery thermal optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223030311
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030311

DOI: 10.1016/j.energy.2023.129637

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223030311