EconPapers    
Economics at your fingertips  
 

Research on coal matrix pore structure evolution and adsorption behavior characteristics under different thermal stimulation

Hao Wang, Liang Wang, Siwen Zheng, Yiwei Sun, Shangkun Shen and Xiaolei Zhang

Energy, 2024, vol. 287, issue C

Abstract: The technique of thermal stimulation for coalbed methane extraction is considered an important approach for increasing coalbed methane production capacity in the future. This study focuses on the impact of the thermal evolution of pore structure in coal on gas adsorption characteristics. The low-pressure CO2 and N2 physical adsorption data were analyzed using classical thermodynamic methods and density functional theory. The results showed a decrease in pore volume and an increase in average pore size. The fractal dimensions obtained from the Frenkel-Halsey-Hill and Sierpinski fractal models indicate that the micro-scale spatial structure of coal becomes simpler, and the surface becomes smoother. The high-pressure volumetric method was employed to determine the gas adsorption parameters of the coal, and a comparison was made between the calculated gas adsorption parameters based on the micro-pore structure parameters of the coal samples. It was found that the variation pattern of micro-pores in the coal samples correlated highly with the methane adsorption capacity. The decrease in adsorption capacity increases the proportion of free-phase methane, which helps enhance the early-stage methane extraction rate. Improving gas migration pathways avoids the limitation imposed by diffusion in the later stages of coalbed methane extraction.

Keywords: Coalbed methane; Pore structure; Thermal stimulation; Ultimate adsorption capacity (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223030712
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030712

DOI: 10.1016/j.energy.2023.129677

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:287:y:2024:i:c:s0360544223030712