EconPapers    
Economics at your fingertips  
 

A feature fusion-based convolutional neural network for battery state-of-health estimation with mining of partial voltage curve

Zhenfeng Lu, Zicheng Fei, Benfei Wang and Fangfang Yang

Energy, 2024, vol. 288, issue C

Abstract: Accurately estimating the state-of-health of batteries is critical for effective battery monitoring and management. However, the estimation remains challenging due to dynamic operation environments and complex battery degradation patterns. In this study, a feature fusion-based convolutional neural network is proposed for battery state-of-health estimation based on voltage measurements obtained during a partial cycle. Instead of directly feeding the voltage data as input, three feature sequences are first extracted, including the capacity versus voltage curve and its differentiation with respect to voltage and life cycle. The objective is to exploit more effective information from intra-cycle and inter-cycle perspectives. Then, an element-wise addition is embedded as a feature fusion operation in the proposed convolutional neural network to generate more efficient feature maps when dealing with multiple model inputs. To validate the performance of the proposed methodology, eighteen batteries from three battery datasets are utilized for comparative studies. Experimental results demonstrate that the data preprocessing from both intra-cycle and inter-cycle perspectives, along with the adoption of the feature fusion operation, significantly improve the accuracy of battery state-of-health estimation, with an average mean absolute error and mean absolute percentage error being no more than 0.0028 and 0.32 %, respectively.

Keywords: Lithium-ion batteries; State-of-health estimation; Convolutional neural network; Feature extraction; Feature fusion (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223030840
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030840

DOI: 10.1016/j.energy.2023.129690

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223030840