EconPapers    
Economics at your fingertips  
 

Effect of frother on bubble entraining particles in coal flotation

Qinghui Shi, Hongzheng Zhu, Tuo Shen, Zhiqian Qin, Jinbo Zhu, Lei Gao, Zhanbei Ou, Yong Zhang and Gaochao Pan

Energy, 2024, vol. 288, issue C

Abstract: Understanding the effect of frother on bubble entraining coal particles is an important guidance for regulating coal flotation behavior. The bubble properties and the flow field surrounding the bubble were investigated using the particle image velocimetry (PIV) technique. The bubble equivalent diameter, bubble deformation rate and low-velocity region area reduced as the frother concentration increased due to a decrease in surface tension. The oscillation of the bubble and low-velocity region were subsequently analyzed. As the frother concentration increased, the oscillation frequency of the bubble and low-velocity region gradually decreased until 1.6 × 10−4 mol/L after that it tended to be stable. The oscillation amplitude of the bubble and low-velocity region slightly varied with the frother concentration but increased as the distance away from the bubble increased. The coal particle trajectories and entrainment phenomenon under the effect of frother were explored via the high-speed motion acquisition equipment. Three typical trajectories that Escape, Offset entrainment, and Entrainment were used to describe the coal particle behavior around the bubble. A predictive model of coal particle entrainment probability influenced by frothers was established. Our findings can provide valuable insight into the development of technology for mineral flotation.

Keywords: Flotation bubble; Entrainment probability; Bubble trailing vortex; Frother concentration; Coal particle (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031055
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031055

DOI: 10.1016/j.energy.2023.129711

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031055