Techno-economic analysis of hybrid liquefaction and low-temperature adsorption carbon capture based on waste heat utilization
Trevor Hocksun Kwan,
Zhixin Liao and
Ziyang Chen
Energy, 2024, vol. 288, issue C
Abstract:
The techno-economic analysis of CO2 capture is important to determine its economic feasibility and its application to hybrid CO2 capture systems urgently needs more attention. This research conducts a techno-economic analysis of a hybrid CO2 system in which the waste energy and uncaptured CO2 from liquefaction are supplied to low-temperature adsorption to enhance the overall energy efficiency. Here, the process and energy models are coupled with the cost analysis model to estimate the capital cost, operational cost, and levelized cost of CO2 capture (LCOC) of the hybrid system. A series of parametric analyses are conducted to determine how the hybrid system's LCOC can be minimized. Results indicate the heat pump has the highest capital cost and is 4 times the compressor because it needs to satisfy the large cooling energy requirement. Moreover, the adsorbent mass exhibits a trade-off between a higher CO2 recovery rate and lower LCOC value due to increasing costs. Ultimately, based on 12.5 % CO2 partial pressure 1 kg/s flue gas, a liquefaction temperature of −48.15 °C, a desorption temperature of 92.5 °C, and operating pressure of 6 MPa, a comparable LCOC of 106.19 $ per tonne CO2 is yielded by the hybrid system.
Keywords: Cryogenic CO2 capture; Low-temperature adsorption; Levelized cost of CO2; Techno-economic analysis; Waste heat utilization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422303116X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s036054422303116x
DOI: 10.1016/j.energy.2023.129722
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().