An entropy efficiency model and its application to energy performance analysis of a multi-stage electric submersible pump
Yang Yang,
Hui Wang,
Chuan Wang,
Ling Zhou,
Leilei Ji,
Yongfei Yang,
Weidong Shi and
Ramesh K. Agarwal
Energy, 2024, vol. 288, issue C
Abstract:
The electric submersible pump (ESP) is a compact multi-stage pump that is widely used in the oil industry. In this study, using the numerical simulations with entropy efficiency (EE) model, the high hydraulic loss region within the ESP hydraulic system is captured, and the energy degradation distribution within the internal flow field is investigated and its inter-stage variability is analyzed. The input power of the ESP hydraulic system is transformed into an entropy-reducing flow, and then the EE is defined to develop a connection between localized energy degradation and the efficiency of the hydraulic system. It was found that there were significant differences among the EEs of the three stages of the ESP hydraulic system. The EE of the first stage reaches 1.29 and 1.32 times that of the second and third (final) stage respectively under overload conditions. However, the overall energy characteristics of the hydraulic system are dominated by the energy dissipation in the second and third stage. In addition, The EE for characterization of pump performance is consistent with the existing research methods in the literature, but it has the advantage of quantifying the correlation between the localized flow field structure and the efficiency of the hydraulic system. This research can provide guidance for the design optimization of ESPs and performance evaluation of related equipment which has theoretical and practical significance.
Keywords: Entropy production theory; Entropy efficiency (EE); Energy degradation; Inter-stage difference; Numerical simulation; Turbulent flow (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031353
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031353
DOI: 10.1016/j.energy.2023.129741
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().