EconPapers    
Economics at your fingertips  
 

High and low frequency wind power prediction based on Transformer and BiGRU-Attention

Shuangxin Wang, Jiarong Shi, Wei Yang and Qingyan Yin

Energy, 2024, vol. 288, issue C

Abstract: An accurate and reliable wind power prediction model has important significance for the operation of power systems and large-scale grid connection. This paper proposes a hybrid deep learning model, CEEMDAN-SE-TR-BiGRU-Attention, for high and low frequency wind power prediction by combining complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), sample entropy (SE), Transformer (TR) and bidirectional gated recurrent unit with attention mechanism (BiGRU-Attention). Firstly, the CEEMDAN decomposes the original wind power sequence into multiple sub-modes and a residual, and the sample entropy of each sub-sequence is calculated by restructuring the sequence, which can effectively alleviate the impact of the original non-stationary series on the accuracy and computational complexity. Next, the reconstructed sequences are further divided into high and low frequency sequences according to the sample entropy value of the original sequence. The Transformer and BiGRU-Attention models are respectively applied to the prediction of high frequency and low frequency sequences according to the characteristics of each sequence. Finally, the predicted values of all components are superimposed to obtain the final prediction results. Experiments are carried out on four datasets with different seasons, and different models are compared to illustrate the effectiveness and superiority of the proposed model. The experimental results show that the proposed model achieves better prediction accuracy.

Keywords: Wind power prediction; Sample entropy; Transformer; Gated recurrent unit; Attention mechanism; Ensemble empirical mode decomposition (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422303147X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x

DOI: 10.1016/j.energy.2023.129753

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s036054422303147x