EconPapers    
Economics at your fingertips  
 

Fast EIS acquisition method based on SSA-DNN prediction model

Chun Chang, Yaliang Pan, Shaojin Wang, Jiuchun Jiang, Aina Tian, Yang Gao, Yan Jiang and Tiezhou Wu

Energy, 2024, vol. 288, issue C

Abstract: Electrochemical impedance spectroscopy (EIS) is an efficient and information-rich technique for detecting lithium-ion batteries. However, the measurement of EIS takes much time, and the lower the measurement frequency, the longer the measurement takes. To address this problem, this study innovatively proposes an EIS prediction method based on a sparrow search algorithm optimized deep neural network (SSA-DNN). The overall measurement time is reduced by extracting features from the medium-high frequency segments, where the EIS measurement is less time-consuming, and predicting the medium-low frequency segments that consume more measurement time. After evaluating the EIS prediction results at different cycling temperatures and states of charge (SOC), it is concluded that the EIS prediction method proposed in this paper has the advantages of fast measurement speed, high accuracy and applicability. Finally, the predicted EIS is used to estimate the state of health (SOH), and the distribution of relaxation time (DRT) is calculated. The results show that the proposed EIS prediction method has a maximum prediction RMSE of 29.15 mΩ, and the measurement time is reduced to 2.94 % of the original measurement time, which can be widely used in various scenarios based on EIS technology.

Keywords: Impedance spectroscopy prediction; Lithium-ion battery; EIS; SSA-DNN (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031626
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031626

DOI: 10.1016/j.energy.2023.129768

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031626