EconPapers    
Economics at your fingertips  
 

EV charging load profile identification and seasonal difference analysis via charging sessions data of charging stations

Wenxin Huang, Jianguo Wang, Jianping Wang, Haiyan Zeng, Mi Zhou and Jinxin Cao

Energy, 2024, vol. 288, issue C

Abstract: The popularity of electric vehicles (EVs) brings environmental benefits, but their hard-to-estimate stochastic charging behaviors places additional diversity on grid load management. This paper proposes a procedure to identify typical charging load profiles (CLPs) via large scale charging session data from charging stations (CSs). The daily CLPs are computed from charging sessions, and a comprehensive similarity metric based on the weighting of Euclidean and Pearson correlation coefficient is proposed to achieve better clustering. The clustering is performed using the Clustering LARge Applications (CLARA) algorithm to accommodate large sample scenarios. Subsequently, hierarchical clustering of CSs is performed based on possible CLPs,and their CLPs are estimated by Monte Carlo simulation. The performance of the proposed method is tested and evaluated with over 340,000 charging sessions from 109 CSs in Wuhan at central China, and seasonal differences in CLPs are explored. The results show that the method of mining typical CLPs from charging sessions is effective, 17 typical CLPs are identified in different seasons, which provide effective information on the fluctuation and magnitude of daily power demand, the charging power demand also shows significant seasonal differences, and good accuracy is achieved by dividing the CSs into different groups for load estimation.

Keywords: Electric vehicle; Charging station; Charging load profile; Data mining; Seasonal difference (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031651
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031651

DOI: 10.1016/j.energy.2023.129771

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031651