FlexNet: A warm start method for deep reinforcement learning in hybrid electric vehicle energy management applications
Hanchen Wang,
Ziba Arjmandzadeh,
Yiming Ye,
Jiangfeng Zhang and
Bin Xu
Energy, 2024, vol. 288, issue C
Abstract:
Deep reinforcement learning (DRL) has been widely studied in the energy management of hybrid electric vehicles (HEVs) for its remarkable energy efficiency improvement compared to conventional methods. However, how to alleviate the time consumption of training a stable reinforcement learning agent still needs to be solved in real-world implementation. This study presents a human expert knowledge encoded ‘warm start’ method with the flexibility to change the neural network architecture. The expert knowledge is encoded in a decision tree which then initializes the weights and bias of the DRL neural network. Compared with another fixed architecture warm start method, the proposed FlexNet exhibits improved learning speed by 60.8 % and 88.8 % in action space 50 and 100, respectively. The energy consumption by the proposed FlexNet EMS method is 12.2 % and 6.4 % better than rule-based and equivalent consumption minimization strategy, respectively. This proposed warm start method can reduce learning time and increase energy efficiency in various energy management applications.
Keywords: Hybrid electric vehicle; Deep reinforcement learning; Warm start; Expert knowledge; Energy management strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031675
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031675
DOI: 10.1016/j.energy.2023.129773
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().