EconPapers    
Economics at your fingertips  
 

FlexNet: A warm start method for deep reinforcement learning in hybrid electric vehicle energy management applications

Hanchen Wang, Ziba Arjmandzadeh, Yiming Ye, Jiangfeng Zhang and Bin Xu

Energy, 2024, vol. 288, issue C

Abstract: Deep reinforcement learning (DRL) has been widely studied in the energy management of hybrid electric vehicles (HEVs) for its remarkable energy efficiency improvement compared to conventional methods. However, how to alleviate the time consumption of training a stable reinforcement learning agent still needs to be solved in real-world implementation. This study presents a human expert knowledge encoded ‘warm start’ method with the flexibility to change the neural network architecture. The expert knowledge is encoded in a decision tree which then initializes the weights and bias of the DRL neural network. Compared with another fixed architecture warm start method, the proposed FlexNet exhibits improved learning speed by 60.8 % and 88.8 % in action space 50 and 100, respectively. The energy consumption by the proposed FlexNet EMS method is 12.2 % and 6.4 % better than rule-based and equivalent consumption minimization strategy, respectively. This proposed warm start method can reduce learning time and increase energy efficiency in various energy management applications.

Keywords: Hybrid electric vehicle; Deep reinforcement learning; Warm start; Expert knowledge; Energy management strategy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031675
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031675

DOI: 10.1016/j.energy.2023.129773

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031675