EconPapers    
Economics at your fingertips  
 

Supramolecular porous-based phase change material based on cucurbit[7]uril complexed amino-montmorillonite

Huihui Wang, Changjun Zou, Yujie Hu, Tingting Xiong and Wenyue Tang

Energy, 2024, vol. 288, issue C

Abstract: Under high-temperature conditions, drill bits, downhole guiding tools, etc. are susceptible to failure, so capturing and storing the heat energy generated is critical for efficient drilling. In this work, a porous material of cucurbit[7]uril (CB[7]) complexed amino-montmorillonite (NH2-MT) was proposed for the first time to encapsulate eutectic nitrate (NIT) to alleviate the high-temperature crisis in the drilling process. The results showed that the structural stability and anti-leakage performance of the supramolecular composite phase change materials (MAC@NIT) were significantly improved by the addition 0.25 g of CB[7], and the adsorption of Na+ and K+ by CB[7] was in the form of monolayer adsorption. The phase change temperature and structure of MAC@NIT-2 remained stable after 200 cycles, and the maximum change of latent heat of solid-liquid was only 3.96 J/g. The special cavity structure of CB[7] further enhanced the thermal conductivity of the MAC@NIT, up to 0.48 W/m·k, which was 20 % higher than the MT@NIT. The addition of MAC@NIT improves the stability of the drilling fluids by 15 %. Additionally, the temperature of the drilling fluids could be reduced by 4.3 °C at a low solid-solid latent heat value. In summary, this study provides ideas for developing ultra-deep oil and gas resources efficiently.

Keywords: Montmorillonite; Supramolecular self-assembly; Composite phase change material; Cucurbit[7]uril; High-temperature (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031730
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031730

DOI: 10.1016/j.energy.2023.129779

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031730