EconPapers    
Economics at your fingertips  
 

Sustainable co-valorization of medical waste and biomass waste: Innovative process design, optimization and assessment

Jianzhao Zhou, Yousaf Ayub, Tao Shi, Jingzheng Ren and Chang He

Energy, 2024, vol. 288, issue C

Abstract: A novel co-valorization process integrating plasma gasification and Fischer-Tropsch synthesis is designed for converting medical waste (MW) and biomass waste (BMW) into mixed e-fuels where the additional required hydrogen is supplied by solar-based electrolysis. Optimization and comprehensive assessments have been conducted for three scenarios with different ratios of BMW. Operations optimization based on genetic algorithm (GA) has led to a remarkable enhancement in the quality of syngas, with a more than 10% increase in H2 mole fraction. Techno-economic analysis reveals the net present values (NPVs) of three scenarios are −2.56 MM$, 3.38 MM$ and 40.1 MM$ with internal rates of return of 3.4 %, 9.5 % and 14.0 %. By improving the subside of MW treatment, the economic viabilities of all scenarios have been enhanced significantly with higher positive NPVs. Environmental assessment shows ∼2.5 kg eqCO2/kg waste and ∼0.1 g eqCO2 per MJ fuel have been generated across the system boundary and the operation of the designed process has been identified to be the largest source of emissions. These findings underscore the potential of our integrated approach to efficiently convert MW and BMW into valuable e-fuels while maintaining a focus on environmental sustainability.

Keywords: Waste valorization; Plasma co-gasification; Process design and integration; Optimization; Techno-economic and environmental assessment (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223031973
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031973

DOI: 10.1016/j.energy.2023.129803

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031973