Numerical investigation on the performance enhancement of PEMFC with gradient sinusoidal-wave fins in cathode channel
Zhijie Chen,
Wei Zuo,
Kun Zhou,
Qingqing Li,
Zhengming Yi and
Yuhan Huang
Energy, 2024, vol. 288, issue C
Abstract:
As the cathode channel structure plays significant effects on the performance of the proton exchange membrane fuel cell (PEMFC), in this work, a 3D multi-phase model of PEMFC is established and effects of cathode channel structure (conventional channel, normal sinusoidal-wave fins and gradient sinusoidal-wave fins) on the performance of PEMFC are numerically investigated. Results indicate that the PEMFC with gradient sinusoidal-wave fins in cathode channel can achieve higher power density and more uniform membrane current density. This is due to that the gas velocity in cathode channel with gradient sinusoidal-wave fins is significantly increased, leading to better oxygen transport and liquid water removal. Furthermore, effects of the geometrical parameters of gradient sinusoidal-wave fins on the electricity generation performance, membrane current density, and mass fraction of oxygen and liquid water of PEMFC are analyzed and discussed. It is found that the optimum waveform depth growth rate and wavelength of the gradient sinusoidal-wave fins is 0.035 and 2.5 mm, respectively. At 0.5 V, the maximum power density of the PEMFC with gradient sinusoidal-wave fins is 5.3% higher than that of the PEMFC with conventional channel.
Keywords: Proton exchange membrane fuel cell; Normal sinusoidal-wave fins; Gradient sinusoidal-wave fins; Performance enhancement (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223032887
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223032887
DOI: 10.1016/j.energy.2023.129894
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().