Effects of the WEC shape on the performance of a novel hybrid WEC-FOWT system
Haitao Wu,
Fengshen Zhu and
Zhiming Yuan
Energy, 2024, vol. 288, issue C
Abstract:
A novel wind-wave energy hybrid concept is presented in this paper, consists of a floating semi-submersible wind turbine and multiple point absorption wave energy converters (WECs). Numerical simulations are conducted using the hydrodynamic analysis program AQWA, based on the three-dimensional (3D) potential theory. To ensure the reliability of the numerical model, the hydrodynamic responses of the semi-submersible platform and the WECs are validated using available experimental data. Finally, three WECs with different shapes are designed to investigate the shape on the performance of this hybrid system, including platform motion, mooring line tension and power captured by the WECs. The results demonstrate that the hybrid system with the circular truncated conical WECs has the best performance compared to the other two shaped WECs. In addition, the influence of the platform motion on the performance of the WEC array is negative. Overall, this study could provide some insights for the design of other wind-wave integrated systems.
Keywords: SPIC concept semi-submersible platform; Point absorption wave energy converter; Hybrid system; Platform motion; Mooring line tension; Absorbed power (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033017
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033017
DOI: 10.1016/j.energy.2023.129907
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().