Distribution network restoration supply method considers 5G base station energy storage participation
Xiaowei Wang,
Qiankun Kang,
Jie Gao,
Fan Zhang,
Xue Wang,
Xinyu Qu and
Liang Guo
Energy, 2024, vol. 289, issue C
Abstract:
This paper proposes a distribution network fault emergency power supply recovery strategy based on 5G base station energy storage. This strategy introduces Theil's entropy and modified Gini coefficient to quantify the impact of power supply reliability in different regions on base station backup time, thereby establishing a more accurate base station's backup energy storage capacity model that can fully utilize the base station's energy storage resources to participate in the emergency power supply of distribution network faults. First, the optimal Copula function in each cycle is determined through the Akaike information criterion and squared Euclidean distance to establish a wind power-photovoltaic output scenario. Secondly, the traditional Gini coefficient is modified using the weighted average node degree and influence rate indicators. A comprehensive vulnerability model is established through the modified Gini coefficient and Theil's entropy indicators. Based on the comprehensive vulnerability model, a backup energy storage time model and a modified backup energy storage capacity model of the base station affected by power supply reliability are established. Thus, the callable energy storage capacity of base stations in different areas is obtained. Finally, a two-stage robust optimization model is introduced to minimize system operating costs to solve the volatility of 5G base station communications and wind-solar output, thereby establishing an emergency power supply recovery model for base station energy storage and wind-solar output. Simulated with the improved IEEE-33 node model, the results show that the proposed base station's energy storage model improves the utilization of the base station energy storage resources and, at the same time, effectively reduces the loss of load during the fault phase of the distribution network and improves the absorption of the PV output.
Keywords: 5G base station; Backup energy storage; Power supply restoration; Copula function; Corrected gini coefficient (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422303219X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s036054422303219x
DOI: 10.1016/j.energy.2023.129825
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().