EconPapers    
Economics at your fingertips  
 

A numerical and experimental analysis of a novel highly-efficient water-based PV/T system

Mehmet Ali Yildirim and Artur Cebula

Energy, 2024, vol. 289, issue C

Abstract: New materials and designs have been developed and proposed to enhance the thermal and electrical performance of photovoltaic-thermal (PV/T) systems in recent years. Despite the significant attention received by PV/T technology, the available PV/T modules are scarce due to complex system designs, environmentally unfriendly working fluids, and low thermal efficiency. In this paper, a highly efficient water-based PV/T system is proposed by combining an innovatively designed cooling system with a PV module. An experimental evaluation of the designed PV/T system was carried out in laboratory conditions. The test results of the PV/T system showed that when the inlet mass flow rate and temperature were 0.0458 kg/s and 11.90 °C, the PV/T system reached the maximum thermal efficiency of 96.47 ± 1.40 %. The increase in mass flow rate from 0.0042 kg/s to 0.0375 kg/s and the decrease in inlet temperature from 17.70 °C to 11.40 °C led to a 12 % improvement in thermal efficiency of the PV/T system showing that the inlet mass flow rate and temperature have a significant influence on thermal efficiency. The developed 3-D numerical model accurately estimated the outlet temperature of the PV/T system. A maximum of 3.43 % error occurred between the experimental results and model output.

Keywords: Cooling system design; Electrical and thermal efficiency; Heat transfer; Photovoltaic-thermal system (PV/T); Solar energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223032693
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032693

DOI: 10.1016/j.energy.2023.129875

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223032693