EconPapers    
Economics at your fingertips  
 

An optimization study of passive flow control mechanism for a seashell-shaped wind turbine

Hossam Hamid and Rafea Mohamed Abd El Maksoud

Energy, 2024, vol. 289, issue C

Abstract: Small wind turbines have a lot of promise in areas that are remote from the power grid. For such small-scale applications, such as off-grid electricity, a spiral wind turbine (SWT), a novel type of horizontal-axis wind turbine, may be employed. Placing wind turbines within a duct is one potential method for increasing the efficiency of wind energy harvesting in low-wind urban locations. In this work, a shroud with a flange at its outlet is created using an optimization approach that attempts to maximize the coefficient of power (CP), which improves SWT performance. An evolutionary algorithm over a Kriging interpolative model serves as the optimizer in use. The shroud's shape is determined using a series of straight lines. Using the commercial code program ANSYS-FLUENT, the Reynolds-averaged Navier-Stokes (RANS) equations are solved along with the SST k–ω turbulence model to determine the turbine CP. The computational results are validated and confirmed with previously published results. The optimal shroud design introduced significant improvements in the CP when applied to the SWT, resulting in a maximum CP of 0.967 (at λ = 3.25), which is 3.6 times the maximum CP of the bare SWT (CP = 0.2668 at λ = 2.5).

Keywords: Aerodynamics; Spiral wind turbine; Shroud; Single-objective optimization; Optimal LHS; Evolutionary algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033066
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033066

DOI: 10.1016/j.energy.2023.129912

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033066