EconPapers    
Economics at your fingertips  
 

Utilization of fuel energy from single-use Low-density polyethylene plastic waste on CI engine with hydrogen enrichment – An experimental study

K. Muthukumar and G. Kasiraman

Energy, 2024, vol. 289, issue C

Abstract: An effective strategy to reduce global waste is to convert the waste into Energy effectively. Single-use Low-density polyethylene (LDPE) plastic waste poses an environmental challenge by slower decomposition. Pyrolysis is one of the best techniques for converting waste plastics into Waste Low-density polyethylene pyrolysis oil (WLPO), a useful energy source similar to diesel. Operating an engine directly with neat WLPO lowers the performance and increases carbon monoxide, unburnt hydrocarbons, and smoke emissions than diesel. Hence, to enhance the performance and emission characteristics of the engine operating with WLPO dual fuel mode, different flow rates of hydrogen induction from 3 to 12 lpm were studied. The results were compared with diesel and neat WLPO. 12 lpm of hydrogen induction shares 15.19 % of hydrogen energy in combustion for WLPO. Compared to neat WLPO, 12 lpm hydrogen induction has a percentage increase of 22.89 in brake thermal efficiency, 15.88 in peak pressure, 60.85 in heat release rate, and 61.46 in Nitrogen oxides, as well as a percentage decrease of 53.42 in smoke, 48.94 in carbon dioxide, 53.99 in unburnt hydrocarbons, and 86.86 in carbon monoxide. Also, these are all similar to and better than the neat diesel operation except for the NOx emission. The hydrogen induction with WLPO increases the engine performance and reduces the smoke and carbon emissions. This fuel usage with hydrogen in IC engines indirectly supports LDPE plastic waste reduction by utilization and reduces objectionable emissions.

Keywords: Waste to energy; Plastic pyrolysis oil; LDPE plastics; Hydrogen; Dual fuel; Diesel engine emission (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033200
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033200

DOI: 10.1016/j.energy.2023.129926

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033200