EconPapers    
Economics at your fingertips  
 

Investigation of flow and viscosity characteristics of hydrate slurries within a visual-loop system

Zaixing Liu, Shihui Ma, Zhaoran Wu, Zheyuan Liu, Jiguang Wang, Chen Lang and Yanghui Li

Energy, 2024, vol. 289, issue C

Abstract: With the gradual advancement of oil and gas exploration into deep offshore, the hydrate blockage has emerged as a critical concern for the flow assurance. We conducted constant-velocity hydrate formation and variable-velocity rheology experiments with a novel visual-loop to analyze slurry flow and viscosity change in pipelines. Results showed staged pressure variations during hydrate formation-aggregation-deposition process, and it could be analyzed judiciously with a developed viscosity model. Initially, hydrates dispersed as small flocculent particles with minor aggregation, gradually raising differential pressure, and the critical viscosity model parameter, hydrate aggregation rate (m) was <1. Subsequently, particle aggregation and wall adhesion dominated, resulting in reduced hydrate flow volume and possible blockage of special pipelines (e.g., dead-leg), with m-values >1. Finally, as hydrate growth continued, substantial adhesion to the pipeline reduced flow diameter, significantly increasing blockage risk. However, the addition of sufficient surface-active ingredients improved hydrate dispersibility and enabled the slurry to maintain the first stage, exhibiting long-term stability with an m-value <1. Additionally, the apparent viscosity of the hydrate slurry within the pipeline was accurately determined utilizing a novel approach, accounting for its yield-pseudoplastic behavior. The calculated viscosities closely matched post-sampling rheometer measurements, and were effectively predicted by the developed viscosity model.

Keywords: Gas hydrate; Visual-loop; Flow characteristic; Viscosity; Model (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033236
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033236

DOI: 10.1016/j.energy.2023.129929

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033236