EconPapers    
Economics at your fingertips  
 

Numerical study on the gasification and shape evolution of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere

Fei Shang, Zhiwei Ge, Yu Wang, Chenchen Zhou, Shenghui Guo and Changyifan Ren

Energy, 2024, vol. 289, issue C

Abstract: In the industrial systems for CO2 gasification of biomass, a large amount of feedstock is presented as rod-shaped particles at different scales. The evolution of such particles during gasification remains unclear. This work investigated the overall gasification characteristics of single rod-shaped biomass char particle in a hot CO2/O2/H2O atmosphere and the intrinsic link between shape evolution and gasification characteristics. The overall gasification characteristics of the particle are discussed, including the influence of various inlet parameters and geometric parameters. The reaction intensity on the particle surface shows significant non-uniformity, which increases with the particle Reynolds number and oxygen concentration but decreases with increasing inlet temperature. The more the particle shape resembles a rod (aspect ratio ranging from 3:2 to 3:1), the more pronounced the non-uniformity of the surface temperature becomes (increasing by over five times). The intrinsic link between particle reaction properties and shape evolution was discussed using the dynamic mesh method. The shrinkage rate at the end of the particle is 1.73 times faster than that at the middle part. The non-uniformity of the surface temperature decreases by 6 % within 5 s, indicating that as the reaction proceeds, the reaction intensity on the particle surface tends to become more uniform.

Keywords: Biomass; CO2 gasification; Char conversion; Shape evolution; Dynamic mesh (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033364
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033364

DOI: 10.1016/j.energy.2023.129942

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033364