EconPapers    
Economics at your fingertips  
 

A hybrid approach based machine learning models in electricity markets

William Gomez, Fu-Kwun Wang and Shih-Che Lo

Energy, 2024, vol. 289, issue C

Abstract: In recent years, integrating renewable and non-renewable energy sources has transformed electric grids, presenting new challenges in predicting energy data due to varying levels of variability. Accurate prediction of both types of energy data is crucial for smart grid technology development and effective renewable energy integration into existing grids. We have introduced an innovative hybrid approach for forecasting both renewable and non-renewable data. This method employs a sophisticated ensemble empirical mode decomposition (EEMD) algorithm, carefully selecting intrinsic mode functions (IMFs) to dissect the original data into distinct IMFs and residuals. The IMFs are predicted utilizing support vector regression (SVR), while the residual series is forecasted using bidirectional long short-term memory with an attention mechanism (BiLSTM-AM). In pursuit of enhanced predictive accuracy, our approach employs an ensemble summation methodology to merge forecasted sub-series effectively. We conducted experiments using two distinct wind speed datasets, generating 24-h forecasts. In comparison to the second-best model, EEMD combined with BiLSTM-AM, our approach demonstrated significant improvement, reducing mean absolute error, root mean square error, and peak percentage of threshold statistics by 7.87 %, 3.91 %, and 23.51 %, respectively. The proposed model accurately captured peak and valley occurrences’ timing and amplitude, surpassing existing models.

Keywords: Energy forecasting; Ensemble empirical mode decomposition; Support vector regression; Bidirectional long short-term memory with attention mechanism; Prediction interval (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033820
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033820

DOI: 10.1016/j.energy.2023.129988

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033820