Effect of cyclic thermal stimulation on the pore structure and fluid space of coal and inspiration for coalbed methane production
He Li,
Xuefen Lv,
Jiexin Lu,
Meng Liu,
Wei Yang,
Yidu Hong,
Ting Liu,
Baiquan Lin and
Zheng Wang
Energy, 2024, vol. 289, issue C
Abstract:
Based on the modified programmed temperature-raising system, cyclic thermal stimulation with different temperature gradients was carried out for lignite, bituminous and anthracite coal, and each group of coal samples after thermal stimulation cycle was subjected to nuclear magnetic resonance (NMR) testing. The NMR T1-T2 spectra and the fractal dimensions of coals in different ranks during thermal simulation quantitatively described the dynamic evolution of the pore fluid storage space of coals. The variation of T2 distribution and pore throat were used to reflect the pore development process of coals. The results shows that the pores and pore throat of lignite developed the best among the three coal ranks and the structure of the pore is complete after the cyclic thermal simulation; the T1-T2 signal peaks increased from 17.05 at 30 °C to 163.00 at 180 °C; the seepage of lignite increased from 6.54 % to 12.43 %; total pore fractal dimension DT has a decreasing trend, indicating reduced inhomogeneity of pores. This indicates that the cyclic thermal stimulation treatment can promote the growth of seepage pores to a greater extent, improve the seepage space, and enhance the connectivity of the pores in the coal samples.
Keywords: Cyclic thermal stimulation; 2D NMR; Pore structure; Pore throat; Fractal dimension (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033881
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033881
DOI: 10.1016/j.energy.2023.129994
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().