EconPapers    
Economics at your fingertips  
 

Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel

Zhelong Lin, Shang Liu, Yunliang Qi, Qingchu Chen and Zhi Wang

Energy, 2024, vol. 289, issue C

Abstract: Ammonia, ethanol, and methanol are promising carbon-neutral fuels in the future. Therefore, the use of alcohol fuels to enhance ammonia combustion in engines deserves further study. The performance of a spark ignition engine with high compression ratio at various loads was experimentally investigated to determine the impact of fuel composition. Specifically, ethanol and methanol were chosen as the primary fuels, while gasoline was assigned as the control group. Gaseous ammonia was introduced through the intake port. The results show that ammonia increases indicated thermal efficiency (ITE) in different ways when blended with different fuels, with the gasoline group obtaining higher ITE (2.8 % relative increase) by optimizing combustion phase, and the ethanol and methanol groups directly enhancing ITE (1.2 % and 0.8 % relative increase) with the same combustion phase due to reduced heat transfer loss. Methanol group shows a more ideal combustion duration under low loads and large ammonia blending ratios and achieves higher ITE due to higher oxygen content. Replacing gasoline with ethanol and methanol significantly reduces greenhouse gas (GHG) under similar NOx emissions, and the advantage of blending carbon-containing fuels with ammonia to reduce GHG is more significant under high loads and large ammonia blending ratios.

Keywords: Ammonia combustion; Ethanol; Methanol; Dual-fuel engine; Emissions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223033923
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033923

DOI: 10.1016/j.energy.2023.129998

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033923