State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model
Feng Li,
Wei Zuo,
Kun Zhou,
Qingqing Li,
Yuhan Huang and
Guangde Zhang
Energy, 2024, vol. 289, issue C
Abstract:
Accurate state-of-charge (SOC) estimation of lithium-ion battery is directly related to the reliability, performance, and safety of the battery. In this work, the second order resistor-capacitance (RC) circuit is equivalent to the battery model and the particle swarm optimization (PSO) algorithm is employed for achieving accurate identification of the parameters of circuit model under dynamic stress test (DST) conditions. Furthermore, the values of open circuit voltage (OCV) obtained from the identification results are input into the temporal convolutional network instead of the terminal voltages, and then the SOC of the Li-ion battery is estimated by directly learning the mapping relationship of OCV-SOC curves, which further improves the estimation accuracy and robustness of the proposed method. Finally, the SOC estimation is validated with the public dataset of LiFePO4 batteries under all driving conditions at different temperature and compared with the individual TCN method. Results show that the SOC estimation of the second order resistor-capacitance circuit-PSO-TCN model is optimal with a root mean square error (RMSE) and maximum error (MAXE) less than 1.8% and 7.65%, respectively.
Keywords: Lithium-ion battery; State of charge estimation; Parameter identification; PSO algorithm; OCV-SOC curve; TCN (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034199
DOI: 10.1016/j.energy.2023.130025
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().