EconPapers    
Economics at your fingertips  
 

Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings

Chuyao Wang, Jie Ji and Hongxing Yang

Energy, 2024, vol. 289, issue C

Abstract: Employing the demand flexibility strategy in PV powered buildings can effectively balance solar energy supply and building energy demand, thereby increasing the self-consumption ratio of PV electricity. Despite this, its solar energy utilization is still low due to the limit of the PV efficiency. On the other hand, PV/T modules not only generate electricity but also produce domestic hot water, thus providing higher solar efficiency. In this study, the demand flexibility of various shiftable appliances in a PV/T powered building was investigated. An optimization-based demand flexibility strategy was proposed to reduce electricity cost and maximum grid power. The case study showed that the proposed strategy could reduce the electricity cost by 23 % and smooth grid power fluctuation. Moreover, compared with the PV powered building, the PV/T powered building could reduce the electricity cost by 10 % and significantly improve utility grid friendliness. Furthermore, the forecast error of boundary conditions negatively affected the electricity cost and grid power fluctuations. The sensitivity analysis revealed that the ambient temperature and solar irradiation on the PV/T modules had a greater impact on the optimization objective. Overall, this work aims to provide guidance for planning the flexibility operation of PV/T powered buildings.

Keywords: Demand flexibility; Building appliances; PV/T module; Global optimization; MILP (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034369
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034369

DOI: 10.1016/j.energy.2023.130042

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034369