EconPapers    
Economics at your fingertips  
 

A power regulation strategy for heat pipe cooled reactors based on deep learning and hybrid data-driven optimization algorithm

Mengqi Huang, Changhong Peng, Zhengyu Du and Yu Liu

Energy, 2024, vol. 289, issue C

Abstract: Heat pipe cooled reactors are ideal for use in remote or isolated locations as dependable, small-scale power sources, thanks to their excellent design characteristics. To tackle real-time changes in power demand within a dynamic environment, this research proposes a decision-making strategy for regulating the power of heat pipe cooled reactors. The strategy is founded on a hybrid data-driven optimization algorithm and deep learning, enabling the attainment of safe and efficient control of heat pipe cooled reactors under specified power requirements. Initially, a power forecast model founded on artificial neural networks for heat pipe cooled reactors is established. Then, an appraisal standard for power regulation arrangements, combining reactor safety and operational effectiveness, is developed based on the utility theory. Finally, this study introduces a hybrid data-driven optimization algorithm that efficiently identifies the power regulation scheme with the greatest utility for given power demands. The proposed technique's effectiveness was demonstrated by selecting the power regulation process of the MegaPower heat pipe cooled reactor as an example. The results indicate that the strategy can make steady, accurate, and near-optimal power regulation decisions for any power demand within 20 s.

Keywords: Heat pipe cooled reactor; Power control; Artificial neural network; Decision algorithm (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034448
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034448

DOI: 10.1016/j.energy.2023.130050

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034448