Computational study of excess air ratio impacts on performances of a spark-ignition H2/methanol dual-injection engine
Changming Gong,
Dong Li,
Jiajun Liu and
Fenghua Liu
Energy, 2024, vol. 289, issue C
Abstract:
The impacts of excess air ratio (λ) on combustion, CO and NO regulated emissions, and formaldehyde (HCHO) and unburned methanol (CH3OH) unregulated emissions behaviors in a spark-ignition H2/methanol dual injection engine were studied numerically. The results show that the peak in-cylinder pressure (PIP), peak heat release rate (PHRR) and peak in-cylinder temperature (PIT) all decrease with the increase of λ, and their corresponding crank angles are also late; the ignition delay (ID) and combustion duration (CD) decrease with the increase of λ; the CO, HCHO and CH3OH emissions increase with the increase of λ, while the NO emission decreases with the increase of λ. At a constant λ, the PIP, PHRR and PIT for with 5 % H2 (RH2 = 5 %) are higher than those for without H2 (RH2 = 0 %), and their corresponding crank angles for RH2 = 5 % are earlier than those for RH2 = 0 %; the ID and CD for RH2 = 5 % are lower than those for RH2 = 0 %. The CO, HCHO and CH3OH emissions for RH2 = 5 % are also much lower than those for RH2 = 0 %, while the NO emission for RH2 = 5 % is also higher than that for RH2 = 0 %. The impact order of adding H2 to reduce emissions of H2/methanol dual-injection engine is: CO ≥ HCHO > unburned CH3OH.
Keywords: Spark-ignition engine; H2/methanol dual-injection; Excess air ratio; Combustion; Emissions (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034539
DOI: 10.1016/j.energy.2023.130059
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().