Power and efficiency improvement of SI engine fueled with boosted producer gas-methane blends and LIVC-miller cycle strategy: Thermodynamic and optimization studies
Priyaranjan Jena and
Jeewan Vachan Tirkey
Energy, 2024, vol. 289, issue C
Abstract:
An appealing alternative solution for lowering both reliance on power grid and pollution is by adopting decentralized power generation using gasifier-engine integrated systems. However, the utilization of gasification-derived producer gas (PG) leads to low engine power output and efficiency as compared to conventional fuels. This pertains to its low Calorific value(CV) and low flame-speed. Therefore, this simulation study aims to simulate and investigate the improvements in these parameters by inspecting various boosted-intake pressures and blends of high-CV methane with PG as inputs along with the implementation of Late inlet valve close(LIVC)-Miller cycle strategy on a 1500 RPM Dual-fuel(DF) SI engine model. Quasi-dimensional thermodynamic modelling (QDTM) was applied to simulate this performance and emission investigation by considering Sewage sludge-based PG (SSPG) as the PG variant. Best operational input settings were found using the Response Surface Methodology(RSM)-based multi-objective optimization. These optimal inputs were 3 bars of Pressure at intake valve closure (PIVC), 76.94 % SSPG-blend, and 77.32⁰ (ABDC) LIVC. The responses were correspondingly predicted as 40.46 % ITE, 21.35 bars IMEP, 16.8 kW BP, 20.04 bars BMEP, 9.48 MJ/kWh BSEC, with 0.08 V% CO and 3094 ppm NO emissions. Finally, with the ANOVA-based analysis, a 0.712 composite desirability was achieved with 95 % confidence level.
Keywords: Sewage sludge producer gas; Methane blend; Boosted intake; Late inlet valve close; Geometrical CR-Miller cycle; Optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054422303462X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s036054422303462x
DOI: 10.1016/j.energy.2023.130068
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().