EconPapers    
Economics at your fingertips  
 

Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph

Yun Wang, Mengmeng Song and Dazhi Yang

Energy, 2024, vol. 289, issue C

Abstract: Accurate wind speed forecasting can help ensure power-system stability. Many previous studies often neglect spatio-temporal dependence. Therefore, effectively modeling the complex and dynamic spatio-temporal correlations (STCs) between spatially distributed wind speeds and extracting informative spatio-temporal features is very important for boosting forecast accuracy. This study proposes a novel sparse and dynamic graph-based spatio-temporal wind speed forecasting method with local–global features (LGFs). First, a dynamic STC modeling block is designed to learn the dynamic STC degree based on the similarity of wind temporal characteristics. To reduce computational costs, a threshold is set to select the most highly correlated neighboring sites, resulting in a sparse graph. Then, a parallel-structured LGF extraction block including a local feature extraction module and a global feature extraction module is developed. It can capture local features for a single site and global features representing spatio-temporal dependence among neighbor sites according to the obtained graph. The obtained features are fused into the comprehensive LGFs. Finally, accurate wind speed forecasts for multiple sites are generated simultaneously. The proposed model is tested using numerous benchmark models, including temporal, spatio-temporal, static graph-based, and complete graph-based models. The results show that it can effectively learn dynamic STCs and attain the highest accuracy.

Keywords: Wind speed forecasting; Spatio-temporal correlation modeling; Local and global feature extraction; Graph structure; Attention mechanism (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034722
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034722

DOI: 10.1016/j.energy.2023.130078

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034722