Experimental study on the displacement effect and inerting differences of inert gas in loose broken coal
Xiyang Fang,
Bo Tan,
Haiyan Wang,
Feiran Wang,
Tianze Li,
Bo Wan,
Changfu Xu and
Qingjie Qi
Energy, 2024, vol. 289, issue C
Abstract:
The pre-injection of inert gas before coal self-ignition is a common key measure for preventing and controlling spontaneous coal combustion in a goaf. Previous studies have mainly considered inerting to reduce the concentration of ambient gas components and explored the influence of oxygen or inert gas concentration on the inerting effect of loosely broken coal, but seldom considered the replacement of oxygen by an inert gas, especially the replacement of adsorbed oxygen. Here, we quantitatively investigated the difference in room-temperature inerting of loosely broken coal by N2 and CO2 by conducting one-factor experiments on replacing oxygen in coal with an inert gas at room temperature and pressure. The results reveal that the replacement process can be divided into three stages and that the different adsorption capacities of coal for N2 and CO2 are the main reasons for the asynchrony of each replacement stage. The stronger the adsorption capacity, the stronger the displacement of adsorbed oxygen in the adsorbed state by the inert gas. CO2 exhibits an inerting strength 2.3–2.6 times higher than N2 and 5.7–8.8 times higher than He. The experiments also revealed that optimizing the key parameters of inert fire protection technology should consider the adsorption effect.
Keywords: Loose broken coal; Coal spontaneous combustion; Inerting effect; Displacement effect; Adsorption (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544223034965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:289:y:2024:i:c:s0360544223034965
DOI: 10.1016/j.energy.2023.130102
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().